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ABSTRACT: The nonlinear Integro-Differential equations play a dominated role in the current applications of Mathematical Modelling and
Engineering. We use Adomian polynomials to find the approximate solution in crisp case and extend it to fuzzy case. Using this
method, we solve problems that the classical methods could not be applied for them in crisp caseand its variations are calculated using
MATHEMATICA.
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I. INTRODUCTION

We present the study for Fredhlom Integro-differential equations using Adomian decomposition method and existing Numerical solutions.
Tables and figures are provided for comparison of the two methods. It is observed that values obtained using Adomian decomposition method
agree very well with the existing numerical results.

The fuzzy integral equations and fuzzy differential equations have been rapidly growing in the recent years. The fuzzy mapping
function was intriduced by chang and Zadeh (2002).later, Dubois and Prade (1998) presented an elementary fuzzy calculus based on
the extension principle.also the concept of integration of fuzzy functions was first introduced by them.then the fuzzy integration is
discussed by allahviranloo et (2003).

In the existence of the solution of fuzzy integral equation,the Ascoli’s theorem or metric fixed point theorems are used.for the existence and
unigueness, the main tools is the banach fixed point principle.such discussions can be found in (2002,2003,2006). Babolian et al. and
abbasbandy et al (2006) obtained a numerical solution of linear Fredholm fuzzy integral equations of the second kind.then Otadi and
Mosleh(2007) considered fuzzy nonlinear integral equations of the second kind and obtanied an approximate solution to the fuzzy nonlinear
integral equations.

Consider the nonlinear fuzzy Fredholm integral equations such as

" b
F(s) = f(9)@ [ K(s.t, F(n))dt,

We generalize the nonlinear fuzzy integral equation to the nonlinear fuzzy integro- differential equations
F'(s)= f(s)® “" K(s,t, F(n)dt, F(a)= F).

Il. PRELIMINARIES
In this section the basic notations used in fuzzy operations are introduced.
Definition 2.1
A fuzzy number is a function u: R into I= [0, 1] having the properties (2008)

(1) u is normal, that is Axy € R such that u(xp) = 1;
(11) u is a fuzzy convex set;

(111) u is upper semicontinuous on R;

(iv) The support {x € R | u(x) > 0} is a compact set.

The set of all the fuzzy numbers is denoted by E.
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Definition 2.2

A fuzzy number u is a pair (u, u) of functions u(r) and u(r), 0 < r < 1,
which satisfies the following requirements

(1) u(r) is a bounded monotonically non-decreasing, left continuous function on
(0, 1] and right continuous at ();

(1) w(r) is a bounded monotonically non-increasing, left continuous function on
(0, 1] and right continuous at 0);

(m) w(r)<u(r),0<r<1.

A crisp number r is simply represented by #(@) = ula) = n0 < a < |
For arbitrary
u = (u(r),u(r)),v = (v(r),v(r))

And k in R we define addition and multiplication by k
(u+v)(r) = (u(r) + v(r)),

(u +v)(r) = (u(r) +v(r),
ku(r) = ku(r), ku(r) = ku(r) if k > 0,
ku(r) = ku(r), ku(r) = ku(r) if k < 0.

Definition 2.3
For arbitrary fuzzy numbers u, v, w we use the Hausdorff distance D
EXE - R, U{0}

D(u,v) = sup max{[u(r) — v(r)|, u(r) — v(r)|}.

0=r<l
We denote || - |lg= D(-,0), where 0 € E,0 = y0.
(1) The pair (E,®) is a commutative semigroup with 0= X0y zero element;

(11) For fuzzy numbers which are not crisp, there is no opposite element (that is,
(E,®) cannot be a group);

(i) For any a,b € R with a,b = 0 or a,b < 0, and for any u € E, we have
(a+b)Qu=aCud®bou;

() FforanydAe Randu,ve E, wehave AQ(uSv) = ACud A0V,
(v) Forany A,y Randu e E, we have A (uCu) = (Au) ©u;

(vi) The function || - ||g: E — &, U{0) has the usual properties of the norm, that is,
|ulle=0ifandonly ifu=0,|| AQu|lg= A | u|lzand || u@ v ||g=|| u ||z ® ||
v g for any u,v € E;

(vit) [l alle =l v e | < D, v) and D(u,v) <|| u|lg + || v ||g for any u,v € E.

Theorem 2.1 (S.G.Gal (2001))
Theorem 2.2(C.X.Wu (2001))

(1) (E, D) is complete metric space;
(ii) D(u@v.v@w) = D(u,w) forall u,v.w € E;
(i) DkOu,kov) = klD(u,v) forall u,v € Eand k € R;

(iv) D(usv,wde) < D(u,w)+ D(v,e) for all u,v,w,e € E.
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Definition 2.4
Let [ : la.b] — E', for each partition P = (o, 1), - ,1,) of [a, b]

RI’ - z f(.{:r)(’r - tl—l)-
=]

[ f(x)dx = limy o Ry,
where
A = max{|t, — il i = 1,2, ,n}

provided that this limit exists in the metric D.
If the fuzzy function f(1) is continuous in the metric D, its definite integral exists

(_Lb f(t'. r)df) = LbIU’ r)df,

) fesndn = [T

Theorem 2.3
The following properties hold

(i) D(f(x), f(¥) € wap(f,|x— V) for any x,y € [a,b);
(11) Wyup)(f.0) is increasing function of o;
(iii) Wiap(f.0) = 0;
(V) Wiap(f, 01 + 02) < Wiap(f,01) + Wiap(f, 62) for any 6,,6, 2 0;
(V) wiap(find) < nwyypy(f,0) forany 6 = 0 and n € N;
(Vi) wiapi(f,26) < (A + Dwyp(f,0) for any 6,4 = 0;

(vi1) If [c.d] € [a,b]), then wiqp)(f,0) € Wian(f.0).

I11. Fuzzy Integro-differential Equations
We consider the nonlinear Fredholm integro-differential equations of the second kind

F'is)= f(s)® rK(s.t. F(nydt, Fla) = F,
Where

fila,bl = Eand K : [a,b] X |a,b]| X E — E

Are continuous. Moreover, K is uniformly continuous with respect to s
Theorem 3.1 Let [ : |a,b] = Eand K : [a,b] x|a,b)xX E — E are continuous. Con-
sider the nonlinear fuzzy Fredholm integro-differential (1). A mapping F : |a.b] — E
is a solution to (1) if and only if F is continuous and satisfies the integral equation

N

r K(z, 1. F(n)ddz, s € [a.b].

a ~a

F(s)'-'F()Qf‘ f(Ddz@

Proof
Since f and K are continuous by O.Kaleva (1987) it must be integrable. So for
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F'(5) = f(s)%f K(s.t, F(n)dr, s € la, bl

We have equivalently [37]
F(s5)=Fla)® f j'(:)‘ﬁfl\’(:. t, F(0)dedz:

l"(s)=I'(a)€~f /(:)d:af rK(:.r.f‘(r))dr(l:,
" ~a ~va

Since F(a)=Fp we have
r~g ~r
F(s)=Fy® ’ f(z)dz 4Dj fb Kz, t, F(1)dtdz.

Consider the space of functions
X ={f : la.b] — E | f continuous)

With the metric D*(f,g)=sup D(f(s),9(s)).Recall the fact that (X,D*) is complete metric space .
Define the operation A by

A(FYs) = Fo @ [ Jdza® { r Kz, 1, F(t)dwdz, s € la, b, ¥f e X.

Theorem 3.2 Suppose that the functions [ and K are continuous. In addition, K is
uniformly continuous with respect to s and there exist L. > O, M, > 0, M5 > 0 such

that
|K(z.r,1)llg < My, Yzi€la.b], YueE,

lflle < My, VYzela,b)
And
DX(k(z, tu), kiz, 0, v)) < LD(u,v), Yz.t€lab), YuvekE

Moreover for every there exists € sueh that 6 and l%2— sl = 9. thefollowirlg inequalities are satisfied

D(0, f : f(2)d2) < e,
P 5y ~b
D(O,j j Kz, t, F())ddz) < e,

Lb—a)}s$ —a) <1,

It has a unique solution F* in X, which can be obtained through the method of successive approximations starting by any element of X.
Moreover in the approximation of solution by terms of sequence of successive approximations
(FM)HHN.- F[(T) = Fﬂv

34 ~3 ~>
Frr1(85) = Fy (il»f fDdz@ l { Kt Fo(t)didz, sela,bl,m=1,2,-
" P e ]

The prior error estimate is

[L(b —a)§ —a)]™

D(F(s5), Fre1(5)) | = Lb—a)$5 —a)

(S — )M, + (S — a)(b— a)Ma),

sclabl, m=1,2,--+.
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Proof  Firstly, we prove that A(X) € X, In this aim, we sce that for all

D(A(F}(.n)./\(f")(.fz))=D(Fo@f f(z)dz(Bf.fK(z.t.F(r)}d:dz.

Fo+f”f(z z@fhj*K(z,t.F(f))dde)
< f @)z, f flydz) +

D( f . f K(z. 1. F(t))dudz, [ : F K(z, 1, F{n)didz)
<D( f ' feMdz @0, f [(x)dz® f f(2)dz) +

D( f' 7 fb K(z.1, F()didz &0,

f ” r K(z.1. F(n)didz & f ’ f K(z,t, F(1))didz)

3 £
= D0, f f(2)d2) + DO, f f Kiz, 1, F(0)ddz)
€

<6+ =
3 2—6.

So, A(F) is uniformly continuous for any F € X, and conscquently continuous on
[a.b]. Then, A(X) C X.

For ¥, G € X and s € |a. b] follows:

' s e
DAGFXs). G(F)(s)) = D(Fy & f f()dz @ f ] K(z.t, F@)dtde,
o a Ja

Fy + f fdzs f .r K(z.1. G(1))drdz)
=X f fb Kz, t, F(1))ddz, f f Kiz. 0, G(e)dedz)

< IX f f‘ L.DUF(1), G(0))ddz

<LD(F,G)Yb—a)s—a)
= LD"(F, G)(b — a)p(s).

Let pi(S) = sup {g(s)) = (5§ —a). Consequently,
rela )
DIA(F Y s), GUF)$)) < LD (F.G)b—a)e(S), 9F,G e X.

Since, 1(b — a)g(S) < 1, the operator A 15 a contraction, Using the Banach's fixed
point principle we infer that (1) has a unigue solution F* in X and the following
inequality holds:
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2 i [L(b —a)(§ —a)]™ ., :
IXF(5), Fpoas(8)) < D'(F" Fpiy) < 1— Lb—a)S _“)D (Fy. F3),

m=1,2"
- '3 5
D*(Fy, F3) = sup D(Fr.-@(),l"'.;iil'f [(z)d:@f fK(z,t.Fq(t))dld:)

asrsh

< sup [ D(0, f j(:)dz)«D(('),f r K{z, 1, Fo(1))drdz)]

asrab

I

ssup| | [f@ledz) +( f f 1Kz, 1, Fo()l gdtd2)]

aszsh Ja

<M(S —a)+ M5 —a)b—a).

In this way, we obtain the iequality (5).

Theorem 3.2 states the existence and uniqueness of the solution to Eq. (1) and the
sequence of successive approximations (F, ) men. converges to this solution in (X, D*).
To approximate, this solution by terms of the sequence of successive approximations
must compute the integral and differential,

V. The Numerical Approaches
We replace the interval [a, b] by a set of discrete equally spaced grid points
Aa=39< 8§ < - < Sp1 <5, =b
At which the exact solution F*(s) is approximated by some x(s).The exact and approximate solutions at Sj,
The grid point at which the solution is calculated are

(b—a)

S =Sp+ih, h= l1<i<n

The first-order approximation of F’(s) is given by

2 Fls+ h)o Fis)
h

n—1
Xm41{5i41) = X1 (5;) B h[f(-‘v) =) Z;)

l"f(s)

b—a
v 2n
[K(si. 55, Xm(t)) © K(3;, S jr1. Xm(Lisa D1

x1(8) = xppi(s0) = Fp: i=0,1,: - 0. m=1,2,+"

By theorem 3.2
2 ~tb—a
XS =2 (s +h[f(sin)+ X

=4

[K(si, S}.L,,(:‘-)y?m(’})) + K(si. 544 I-L,.(’;c I)-?m(‘jo N

Tos 1 (5415 1) = X1 (53 7) + h[?(.r,: ry+ ’E _,—
j—l'l an

[KCSi, 550 X000, Tt ) + KOs 8010 X (o) Tt D1

X1 (50:7) = Foi®i(si:7) = Xpsa(s0; 1) = Fo;
i=01,---.m;m=12,---

X sy =

Let Kis, 1, u.v) and ?(::_. 1., v) be functions K and K of (12) where u and v are con-
stants and u < v. In other words, K(s, ¢, u, v) and K(s, 1, 4, v) are¢ obtained by substi-
tuting x = (w, v) in (12). The domain where K and K are defined

B={(s,t,uv)|a<st<bh—co<y<io0,—00<u<v)
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Theorem 4.1 Let K(s.1. u.v)and K(s.1, . V) belong to C\(B). Let the partial deriva:
tives of K. K be bounded over B also

D{F p(3p). Xm(sp)) = g?ﬁ{om(F'm(-"i)- X500},

D(F i1 (Spe1)s Xme1(Spe1)) = g_}g{Dml(f‘}nx(&)- X105 )0

Then, for arbitrary fixed r : 0 < r < 1,

liy g D(F (1), X (1)) = 0
Preof Let

FoGn)=F (s0) + hLf(siin) + ZT[K(S,.J,. (), Fult, )+

=0

K(sn -‘/viv_'m(l)o ) 'm(‘jo l))]] + O(h‘ ).
— — — n=lbh—ag — —
Froi($p01) = Frat(si) + Al f(sin) + 2 ,—alK(Sa. $iF (1), Fu(t)+
=0 n

S

?(S,‘, 5l -L(';#])ofm(t)o 1 ))]l + o(k2)~

and
X1 (Ses1) = _,,,,l(sk) + hl[(-‘: r) + 85, 2,000, X (1)) +
é(-'v S,H»lr_,,.(';-fl ) -‘m(lﬁl))”-
L Bty — wlb—a — _
o 1 (Sk01) = Kot (55) + ALF(s,) = 2;] TIK(S.' 8 X, (05), X1 )+
=
K(-fn-fyvlyﬁ,,,(l;ol)--x-m(l)ol))”-
Consequently,
—a
FooGea) =%, Gen))=F, () —x,  (52) + h[?:" n
lﬁ(-’n £, L"(’j)~ Fm('&)_ﬁ(-ﬁ- S;-ﬁm(tj).-im(‘i))
+£(-fi~ Siet F (ta1) Falti1)) — K(500 541
2, (25010, Tt D] + 0(,,2)
Fraa1(5ia1) — T (5241) = ml(SA)—l’mu(Si)*h[Z. i

,-—( 2n
[K(S, 5y _m(tl) Fm(')))—K(fu ")__m(lJ) xm(‘;))
+K(J, Fivts i (')ol) rm(')fl))_K(‘l Fivls X (’;OI)
Tl 0] + OG2).
Denote “mol(skol)—_m,l(skﬂ)

X1 (Gkg1)s ¥ Ymes 1(5k01) = Frme1(5ke1) — Tme 1 (S241).
Then

n=1 ph —
W1 (50 D1 5 Wone 150l + Al & === (2L max(IWn (e IVon 2}
=
+2L ma-x(l‘vm(‘ﬁ-l” IVM(‘/-!)”] - O(h?.).
IVm-ol(Jkol)I Ivmnl(fk)l + h[ 2, _lefma‘““ 1(‘/)' IVm(l;)I)

)—I
+.Lmax(|“ (’Jrl)l IVm(’,vol)I” O(h2)>

where L > 0 is a bound for the partial derivatives of K, K. Thus, we have

b — -
Iwmol(-‘k«l)l = lwm+l(-'t)| + an-h_alxi'.m(‘p)- -tm(!p) + Oh*),

b —
IVnhl(‘k'l)I lvnnl(‘l)l + 2Znlh D(Fm(‘p) xm(‘p) + O(h )
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Since W,,.1(1y) = Vit (tn) = 0, we obtain

b— A ek
[Wai(sea)] < 20k + l)nUt——a—l)(_l',,,(!,.,)..r,,,(r,.) + Oh"),
"

b— N
[Vas1(s241)] < 2(k + l)nl.h,—lal)(F,,,(t‘.,), Xm(tp) + O(h7)

and il A — 0, we get DOF (6, X1 (1)) — 0.

V. Numerical Example
Consider the following nonlinear fuzzy Fredholm integro-differential equation

¥ £ 2=y 1 8%t =
F'(s) ={r- s =)@ b {—)CF(t)dt,
($)=A{r 0 r 20 ) j ( ll]) (H)a

Fih=0; 0<r=<l.
The exact solution in this case is given by
Fils)=(r.2—=r)s
By using Adomian decomposition method we obtain

) st s(2—r)
Xme1 (8501 = Xmar (s S A (r — a0 .l—r—T)e

i L o ) 0 (CEEL 0 2 sy
—_— D) 4 S(— O X (541 :
g0 1n © FmtsN @ (=5 miSset,

=D

Also by using Adomian polynomials
x1(50) = X (s0) =0, 5, =ih, e =0, 1,-+-,30; m= 1,2, 10,

Where
Xm(5;) = (min{xy’(s;: r). S (8} r). Xm0 PYXm( S50 0)),
nmax{x_.,."'( S5 1) X8 7). Xl 8 3 P (850 1)),

Comparison between the exact solution and the approximate solution of nonlinear fuzzy Fredholm integro-differential equation in the
example given by the numerical solution.

Table 5.1
Comparison between the exact solution and the approximate solution for t =0.1
Present Result Exact Result
FADM Parandin (2013)
r X(t,r) x(t,r) x(t,r) x(t,r)
0 4.7635 2.5649 4.7635 2.5649
0.1 4.6535 2.6749 4.6535 2.6749
0.2 4.5456 2.7848 4.5436 2.7848
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0.3 4.4337 2.8947 4.4337 2.8947
0.4 4.3238 3.0047 4.3238 3.0047
0.5 4.2138 3.1146 4.2138 3.1146
0.6 4.1039 3.2245 4.1039 3.2245
0.7 3.9940 3.3344 3.9940 3.3344
0.8 3.8841 3.4444 3.8841 3.4444
0.9 3.7741 3.5543 3.7741 3.5543
1 3.6642 3.6642 3.6642 3.6642

Table 5.2
Comparison between the exact solution and ADM solution for t =0.5

Present Result Exact Result

FADM Parandin (2013)
' X(t,r) x(t,r) X(t,r) x(t,r)
0 9.5103 6.7918 9.5140 6.7957
0.1 9.3744 6.9278 9.3781 6.9316
0.2 9.2384 7.0637 9.2422 7.0675
0.3 9.1025 7.1996 9.1062 7.2034
0.4 8.9666 7.3355 8.9703 7.3394
0.5 8.8307 7.4714 8.8344 7.4753
0.6 8.6947 7.6074 8.6985 7.6112
0.7 8.5588 7.7433 8.5626 7.7471
0.8 8.4229 7.8792 8.4267 7.8830
0.9 8.2870 8.0151 8.2908 8.0189
1 8.1511 8.1511 8.1548 8.1548

Table 5.3
The Comparison between the error of the FADM and existing method int = 0.5

Error Error
R FADM Parandin (2013)

x(t,r) x(t,r) x(t,r) x(Lr)
0 0.053712797 0.003872731 0.00040369 0.0040166
0.1 0.003720793 0.003864735 0.00036342 0.0036139
0.2 0.003728791 0.003856738 0.00032316 0.0032113
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0.3 0.003736787 0.003848741 0.00028289 0.0028086
0.4 0.003744784 0.003840744 0.00024262 0.0024059
0.5 0.003752781 0.003832748 0.00020235 0.0020032
0.6 0.003760777 0.003824751 0.00016209 0.0016006
0.7 0.003768774 0.003816754 0.00012182 0.0011979
0.8 0.003776771 0.003808757 0.00008155 0.0079520
0.9 0.003784767 0.003800761 0.000041283 0.0039253
1 0.003792764 0.003792764 0.000001015 0.0010151
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Figure 5.3 Solution ofx(t,r) for various values of r at t=0.02 using FADM with
Exact
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Figure 5.4 Solution of
x(t,r) for various values of r at t=0.8 using FADM with Exact
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Solution of FADM and Exact fort =05
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Figure 5.5 Solution of ~ x(t,r) for various values of r at t=0.5 using FADM with Exact
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Figure 5.6 Solution of x(t,r) for various values of r at t=0.1 using FADM with Exact
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3.6 CONCLUSION

Modified Adomian decomposition method is a powerful technique which is capable of handling higher order fuzzy Integro- differential
equations. The methods have been successfully employed to higher order fuzzy Integro differential equations. When the approximation results
are found by using Modified Adomian decomposition method and compared to the exact solutions with existing results. Also it is seen that the
convergent are quite close.
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